近义词:即兴发挥
意思就是随机应变的意思,随着情况的变化灵活机动地应付。即兴就是事先没有任何准备,根据当时的感受所做出反应的意思。
即兴发挥就是说在没有准备的条件下随意表达自己。
例句
上一些即兴表演的课程可能对你即兴发挥能力有帮助
小故事一、用人之道
去过庙的人都知道,一进庙门,首先是弥陀佛,笑脸迎客,而在他的北面,则是黑口黑脸的韦陀。但相传在很久以前,他们并不在同一个庙里,而是分别掌管不同的庙。
弥乐佛热情快乐,所以来的人非常多,但他什么都不在乎,丢三拉四,没有好好的管理账务,所以依然入不敷出。而韦陀虽然管账是一把好手,但成天阴着个脸,太过严肃,搞得人越来越少,最后香火断绝。
佛祖在查香火的时候发现了这个问题,就将他们俩放在同一个庙里,由弥乐佛负责公关,笑迎八方客,于是香火大旺。而韦陀铁面无私,锱珠必较,则让他负责财务,严格把关。在两人的分工合作中,庙里一派欣欣向荣景象。
其实在用人大师的眼里,没有废人,正如武功高手,不需名贵宝剑,摘花飞叶即可伤人,关键看如何运用。
小故事二、所长无用
有个鲁国人擅长编草鞋,他妻子擅长织白绢。他想迁到越国去。友人对他说:“你到越国去,一定会贫穷的。”“为什么?”“草鞋,是用来穿着走路的,但越国人习惯于赤足走路;白绢,是用来做帽子的.,但越国人习惯于披头散发。凭着你的长处,到用不到你的地方去,这样,要使自己不贫穷,难道可能吗?”
故事心得:一个人要发挥其专长,就必须适合社会环境需要。如果脱离社会环境的需要,其专长也就失去了价值。因此,我们要根据社会得需要,决定自己的行动,更好去发挥自己的专长。
小故事三、袋鼠与笼子
一天动物园管理员发现袋鼠从笼子里跑出来了,于是开会讨论,一致认为是笼子的高度过低。所以他们决定将笼子的高度由原来的10米加高到20米。结果第二天他们发现袋鼠还是跑到外面来,所以他们又决定再将高度加高到30米。
没想到隔天居然又看到袋鼠全跑到外面,于是管理员们大为紧张,决定一不做二不休,将笼子的高度加高到100米。
一天长颈鹿和几只袋鼠们在闲聊,“你们看,这些人会不会再继续加高你们的笼子?长颈鹿问。“很难说。袋鼠说∶“如果他们再继续忘记关门的话!
故事心得:事有“本末、“轻重、“缓急,关门是本,加高笼子是末,舍本而逐末,当然就不得要领了。
小故事四、扁鹊的医术
魏文王问名医扁鹊说:“你们家兄弟三人,都精于医术,到底哪一位最好呢?
扁鹊答:“长兄最好,中兄次之,我最差。
文王再问:“那么为什么你最出名呢?
扁鹊答:“长兄治病,是治病于病情发作之前。由于一般人不知道他事先能铲除病因,所以他的名气无法传出去;中兄治病,是治病于病情初起时。一般人以为他只能治轻微的小病,所以他的名气只及本乡里。而我是治病于病情严重之时。一般人都看到我在经脉上穿针管放血、在皮肤上敷药等大手术,所以以为我的医术高明,名气因此响遍全国。
故事心得:事后控制不如事中控制,事中控制不如事前控制。
小故事五、曲突徒薪
有位客人到某人家里做客,看见主人家的灶上烟囱是直的,旁边又有很多木材。客人告诉主人说,烟囱要改曲,木材须移去,否则将来可能会有火灾,主人听了没有作任何表示。
不久主人家里果然失火,四周的邻居赶紧跑来救火,最后火被扑灭了,于是主人烹羊宰牛,宴请四邻,以酬谢他们救火的功劳,但并没有请当初建议他将木材移走,烟囱改曲的人。
有人对主人说:“如果当初听了那位先生的话,今天也不用准备筵席,而且没有火灾的损失,现在论功行赏,原先给你建议的人没有被感恩,而救火的人却是座上客,真是很奇怪的事呢!主人顿时省悟,赶紧去邀请当初给予建议的那个客人来吃酒。
随机应变 [suí jī yìng biàn]
生词本基本释义机:时机,形势。随着情况的变化灵活机动地应付。 褒义出 处《旧唐书·郭孝恪传》:“建德远来助虐;粮运阻绝;此是天丧之时;请固武牢;屯军汜水;随机应变;则易为克殄。” 例 句 1. 打排球也要~,运用多种战术,方能取得胜利。
临时发挥意思是没有提前规划,现场特定时间自我展现。临时发挥考验一个人的临场应变能力,能力好的人可以博得头彩,能力差的人可能会被人嘲讽。在日常生活中,我们可以通过不断给自己制造表现的机会来锻炼自己的临时发挥能力。这样在以后的生活中,我们可以更好的展现自己临时发挥的能力。
临时党支部书记及成员,在临时任务中,首先党支部成员代头冲锋在前起先锋代头作用,并组织群众完成临时任务。
之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。
训练数据:
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
检测数据:
sunny,hot,high,weak
结果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代码调用Mahout的工具类实现分类。
基本思想:
1. 构造分类数据。
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
接下来贴下我的代码实现=》
1. 构造分类数据:
在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。
数据文件格式,如D1文件内容: Sunny Hot High Weak
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 测试代码
*/
public static void main(String[] args) {
//将训练数据转换成 vector数据
makeTrainVector();
//产生训练模型
makeModel(false);
//测试检测数据
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean参数是,是否递归删除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成训练模型失败!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("检测数据构造成vectors初始化时报错。。。。");
System.exit(4);
}
}
/**
* 加载字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用贝叶斯算法开始分类,并提取得分最好的分类label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("检测所属类别是:"+getCheckResult());
}
}
1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。
WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。
2. 请谈谈您在WebGIS开发方面的经验和技能。
我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。
3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。
在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。
4. 请谈谈您对WebGIS未来发展的看法和期望。
我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。
这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。
失常发挥就是没有发挥出自己的正常水平,这种情况在高考中屡见不鲜,比如有的学生考试时经常会出现低级错误,答题卡不填或者是填错题号等,这都属于失常发挥,超常发挥指的是比平时考的好很多,我们常称这些同学运气非常好,答题时发现很多题都是自己原来做过的,答题非常顺利,这就是超常发挥。
自行发挥强调的是个人行为,自由发挥强调的是不受约束