元朝中前期的民族问题?

时间:2025-05-06 13:33 人气:0 编辑:招聘街

一、元朝中前期的民族问题?

一、元朝的民族分类

1、元朝的民族分治政策

元朝存在不成文的民族分治政策——“四等人制”,按照元朝建国初期的统治需求,将国内民族分为:蒙古人、色目人、汉人和南人。

第一等级:蒙古人,元朝的统治民族;第二等级:色目人,跟随蒙古人西征,从中亚和东欧来到元朝生活的外国人;第三等级:汉人,主要指淮河以北的汉族、契丹族和女真族;第四等级:南人,淮河以南的汉族和少数民族。

2、元朝四等人制的政治目的

元朝实行民族分治等级制度的目的,是巩固蒙古人的统治。蒙古人通过民族分治政策,拉拢和维护与色目人之间的关系,打击具有反抗意识的汉人和南人。四等人制虽然在短时间内快速维护了元朝的统治,却因为歧视导致国内民族间的敌对,隐患积聚成“疾”,衰败国运,最终灭亡。

二、元朝民族分治的具体表现

1、蒙汉杂糅的官制

官制是元朝蒙汉杂糅的重要领域。蒙古朝廷通过各种招聘条件,限制汉人和南人为官数量,通过对中书省官员的民族限定,拒接汉人在元朝行政中枢任职。以丞相为例,查考《元史》有这样的记载:“丞相必用蒙古勋臣,设右丞相、左丞相各一员,蒙古人尚右,故丞相中以右丞相为尊。”

再以御史大夫为例,查考《元史》:“拜御史大夫,非国姓不以授。”可以看出,元朝的核心官制是以“任人唯亲”为原则,只有蒙古人和对国家有突出贡献的人,才有机会授予较高的官职。

2、元朝的科举体制

科举是中国封建国家选拔人才的基本方法,元朝也是沿用此法,但增加了新规则。元朝考生按照民族分类,在考试科目、录取人数比例和入仕官职上都有不同的标准。

首先,从考试科目上看,汉人考三门,蒙古人和色目人考两门。“取士各有科目,举人宜以德行为首,试艺则以经术为先,词章次之,浮华过实,朕所不取,定其条例。”元朝统治阶级轻视汉族的诗词歌赋,在科举考试中,诗词只用于对汉人的考察,不纳入对蒙古人和色目人的考核。

其次,从录取人数比例上看,蒙古人和色目人的报考人数较少,录用人数却和汉人相同。史书记载:“蒙古﹑色目﹑汉人﹑南人四等﹐乡试各取七十五名﹐会试各取二十五名。汉人﹑南人超过蒙古﹑色目百倍。”表面上,元朝政府维护各民族入朝为官的平等权力,实则汉人和南人的报考人数超过蒙古人和色目人百倍,汉人和南人的录取比例较低,科考中榜难度增大。

再次,汉人和蒙古人的官阶起点不同。科考中榜的汉人考生是以七品官入仕,蒙古人和色目人则是以六品官入仕。同科出身的汉人在官阶上直接低于蒙

二、民族问题与阶级问题有的区别?

民族问题本质上就是起源于阶级问题。新石器时代末期先有阶级分层,然后才有不同族群,所谓氏族(父系和母系)、家族、部落、族群不过是阶级矛盾不可调和的产物而已,根本原因是不同人力量不同,强弱对比形成不同阶级,然后强大的人(阶级)成为一方或一大批人的领袖,然后强大的领袖(上层阶级)把一个地方或一大批人组建成家族、氏族、部落、族群,其它人成为被统治者(下层阶级),然后强大的氏族部落族群领袖征服其它的部落、族群成为国王,形成国家,然后不同的国家才会形成不同的民族,所以民族形成的根本原因还是氏族,是阶级的分层。

民族的形成是以近代资本主义初期国家的边界已经稳定,新航路开辟世界经济文化交流增加以及整体性加强为基础的,因为是遵从“民族自决”甚至一定程度上的“自愿”的(斯拉夫人分出俄罗斯、乌克兰、波兰、南斯拉夫,美利坚民族由英国德国移民组成),需要充分的经济政治文化交流融合,这和地主阶级奴隶主阶级的族群划分有着根本的不同,地主阶级奴隶主阶级的族群划分是强制性的大多数都是不可改变的(血缘为基础)当然也有例外就是皇帝说你是什么族的就是什么族的(参考汉宰相金日晖,以及唐皇室有80%鲜卑族血统依然自称汉族,但都是强制性的)

毫无疑问,民族性是在现阶段不可否认的,以及民族性的相对独立性也一样,但是要记住民族性是具有的是“相对”独立性,实际上民族性是摆脱不了阶级性的,是依附于阶级性的。随着经济全球化,世界联系越来越紧密,民族性必然会越来越淡化甚至有可能在某种程度上消失。但是有些人就有疑问了,世界各国各民族都有不同的语言文化、风俗习惯、风土人情甚至思维方式,这不是世界各民族鲜明的特征,是鲜明的民族性吗?错,这些都仅仅是体现出了多元文化性而已,民族性虽然以阶级性为基础,也依附于阶级性,却以多元文化性的形式为重要的外在表现,这也是民族主义最具有欺骗性的地方,很多民族主义者都喜欢吧民族性和文化性联系起来对人民进行欺骗,以此来掩盖民族的阶级性本质。事实上,无产阶级从不否认文化多元性,共产主义也不排除文化多元化,甚至鼓励文化多元化,因为共产主义就是要求任何人都自由发展,每个人的自由发展是所有人自由发展的条件,因此每个人的自由发展必然导致文化多元化,而文化多元化必然促进每个人的自由发展。文化多元化也促进人从必然王国走向自由王国

三、当今世界民族问题有哪些?

关于当今民族问题有以下内容:可以这么说自从第二次世界大战后,直至当今,民族问题遍及世界各种类型的国家。如苏联的立陶宛、格鲁吉亚、亚美尼亚等非俄罗斯人,美国的黑人、奇卡诺人、印第安人,加拿大的法语民族,西班牙的巴斯克人、加泰隆人,英国的北爱尔兰天主教与新教徒问题,法国的科西男人,比利时的瓦隆人和佛拉芒人,塞浦路斯的希腊人、土耳其人,斯里兰卡的僧伽罗人和泰米尔人,印度的锡克族,商斯拉夫的阿尔巴尼亚人,罗马尼亚的匈牙利人等等,都成为复杂而烦人的问题。希望有帮助!!

四、mahout面试题?

之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。

训练数据:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

检测数据:

sunny,hot,high,weak

结果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代码调用Mahout的工具类实现分类。

基本思想:

1. 构造分类数据。

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

接下来贴下我的代码实现=》

1. 构造分类数据:

在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。

数据文件格式,如D1文件内容: Sunny Hot High Weak

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 测试代码

*/

public static void main(String[] args) {

//将训练数据转换成 vector数据

makeTrainVector();

//产生训练模型

makeModel(false);

//测试检测数据

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean参数是,是否递归删除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成训练模型失败!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("检测数据构造成vectors初始化时报错。。。。");

System.exit(4);

}

}

/**

* 加载字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用贝叶斯算法开始分类,并提取得分最好的分类label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("检测所属类别是:"+getCheckResult());

}

}

五、webgis面试题?

1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。

WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。

2. 请谈谈您在WebGIS开发方面的经验和技能。

我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。

3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。

在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。

4. 请谈谈您对WebGIS未来发展的看法和期望。

我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。

六、freertos面试题?

这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。

七、paas面试题?

1.负责区域大客户/行业客户管理系统销售拓展工作,并完成销售流程;

2.维护关键客户关系,与客户决策者保持良好的沟通;

3.管理并带领团队完成完成年度销售任务。

八、面试题类型?

你好,面试题类型有很多,以下是一些常见的类型:

1. 技术面试题:考察候选人技术能力和经验。

2. 行为面试题:考察候选人在过去的工作或生活中的行为表现,以预测其未来的表现。

3. 情境面试题:考察候选人在未知情境下的决策能力和解决问题的能力。

4. 案例面试题:考察候选人解决实际问题的能力,模拟真实工作场景。

5. 逻辑推理题:考察候选人的逻辑思维能力和分析能力。

6. 开放性面试题:考察候选人的个性、价值观以及沟通能力。

7. 挑战性面试题:考察候选人的应变能力和创造力,通常是一些非常具有挑战性的问题。

九、cocoscreator面试题?

需要具体分析 因为cocoscreator是一款游戏引擎,面试时的问题会涉及到不同的方面,如开发经验、游戏设计、图形学等等,具体要求也会因公司或岗位而异,所以需要根据实际情况进行具体分析。 如果是针对开发经验的问题,可能会考察候选人是否熟悉cocoscreator常用API,是否能够独立开发小型游戏等等;如果是针对游戏设计的问题,则需要考察候选人对游戏玩法、关卡设计等等方面的理解和能力。因此,需要具体分析才能得出准确的回答。

十、mycat面试题?

以下是一些可能出现在MyCat面试中的问题:

1. 什么是MyCat?MyCat是一个开源的分布式数据库中间件,它可以将多个MySQL数据库组合成一个逻辑上的数据库集群,提供高可用性、高性能、易扩展等特性。

2. MyCat的优势是什么?MyCat具有以下优势:支持读写分离、支持分库分表、支持自动切换故障节点、支持SQL解析和路由、支持数据分片等。

3. MyCat的架构是怎样的?MyCat的架构包括三个层次:客户端层、中间件层和数据存储层。客户端层负责接收和处理客户端请求,中间件层负责SQL解析和路由,数据存储层负责实际的数据存储和查询。

4. MyCat支持哪些数据库?MyCat目前支持MySQL和MariaDB数据库。

5. MyCat如何实现读写分离?MyCat通过将读请求和写请求分别路由到不同的MySQL节点上实现读写分离。读请求可以路由到多个只读节点上,从而提高查询性能。

6. MyCat如何实现分库分表?MyCat通过对SQL进行解析和路由,将数据按照一定规则划分到不同的数据库或表中,从而实现分库分表。

7. MyCat如何保证数据一致性?MyCat通过在多个MySQL节点之间同步数据,保证数据的一致性。同时,MyCat还支持自动切换故障节点,从而保证系统的高可用性。

8. MyCat的部署方式有哪些?MyCat可以部署在单机上,也可以部署在多台服务器上实现分布式部署。

相关资讯
热门频道

Copyright © 2024 招聘街 滇ICP备2024020316号-38